Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Language
Year range
1.
Salud ment ; 36(3): 201-210, may.-jun. 2013. ilus
Article in Spanish | LILACS-Express | LILACS | ID: lil-689665

ABSTRACT

Neuropsychiatric diseases (NPD) are characterized by changes in brain plasticity involving alterations in the morphology and functionality of neurons. However, affectations of the neuronal development (neurogenesis) in the adult brain are also shown. The neurogenic process is widely regulated by different factors such as genes, microenvironment, hormones, neurotransmitters, environmental cues and, also, nutrition. Thus, alterations in these factors negatively impact the neuronal development. Several studies performed in humans have revealed alterations of neurogenesis in NPD. However, most of the knowledge derives from studies done in animal models of NPD. The evidences from animal models are controversial, thus the use of human-induced pluripotent stem cells as a model of NPD has marked a way to study alterations in the neuronal development. Recently, the use of another cellular model for studying NPD has been proposed. Multipotent stem cells derived from olfactory epithelium (MOESCs) are a good candidate. However, evidences are scarce and deeper studies are necessary to know if there is or not a correlation of alterations in neuronal development in the OE with the changes observed in the brain; or if the MOESCs can mimic alterations shown in NPD that could let to get more knowledge about the factors promoting these diseases. Thus, in this review we discuss basic information about adult neurogenesis under physiological and non-physiological conditions in the hippocampus, olfactory bulb and olfactory epithelium.


Las enfermedades neuropsiquiátricas (ENP) se caracterizan por cambios en la plasticidad cerebral que incluyen la pérdida neuronal en regiones específicas en el encéfalo, cambios en la transmisión sináptica originada por alteraciones en los contactos sinápticos y también por la expresión de genes. Además, otro proceso que forma parte de la plasticidad cerebral y que también se encuentra afectado en las ENP es la generación de nuevas neuronas (neurogénesis). El proceso neurogénico en el adulto es regulado de manera fina por diversos factores como los aspectos genéticos, celulares, el microambiente, los elementos neuroquímicos, los ambientales y los nutricionales. Las alteraciones de estos factores impactan en el desarrollo y en la función de las nuevas neuronas. Algunos estudios realizados en humanos han revelado las alteraciones en la neurogénesis en algunos ENP. Sin embargo los mayores avances logrados han utilizado modelos animales de ENP. En algunos casos estas evidencias son controvertidas y recientemente se han tratado de aclarar utilizando cultivos de células madre pluripotenciales-inducibles humanas como modelos de ENP. Otro modelo que se ha propuesto para estudiar las alteraciones en el desarrollo neuronal en las ENP son las células madre multipotenciales del epitelio olfatorio (CMPEO). Sin embargo las evidencias obtenidas con las CMPEO son escasas y resulta necesario demostrar si existe o no un correlato con las alteraciones que ocurren en el desarrollo neuronal a nivel central en las ENP, o bien si las CMPEO pueden mostrar las alteraciones observadas en las ENP que permitan obtener información acerca de los factores que promueven estas enfermedades. Por lo tanto en esta revisión se incluyen aspectos básicos de la neurogénesis e información relevante de las alteraciones de este proceso en las tres regiones neurogénicas en el adulto: el hipocampo, el bulbo olfatorio y el epitelio olfatorio.

2.
Salud ment ; 35(6): 527-533, nov.-dic. 2012. ilus
Article in Spanish | LILACS-Express | LILACS | ID: lil-675553

ABSTRACT

Estrogens produce a wide range of biological effects throughout the body, including the Central Nervous System (CNS). In the brain, besides acting as neuroprotective agents, estrogens play an important role in many neuronal processes and certain psychiatric disorders such as depression. The precise mechanism by which estrogens induce their positive effects on depressive disorders has not been elucidated; however, it is known that estrogens act on the CNS through the activation of specific receptors. These actions occur in genomic and non-genomics mechanisms through the modulation of synthesis and metabolism of neurotransmitters, neuropeptides, neurosteroids and influencing the morphological features of neurons and synaptic function. In addition, it is known that estrogens can act as modulators of processes related to neuroplasticity and neurogenesis. Adult hippocampal neurogenesis is a neuroplastic process that is affected by antidepressant drugs. These drugs increase the number of new neurons following a temporal course that correlates within the time in which antidepressants cause a behavioral improvement in rodents and in humans. Interestingly, whereas the behavioral antidepressant effects require 2-4 weeks to appear, after treatment initiation, estrogen reduce the depressive-like behavior and induce cell proliferation in terms of days. Thus, antidepressant drugs and the estrogens replacement during the adulthood could influence in a similar manner the new neuron formation. Furthermore, recent works have indicated that the combination of antidepressants plus estrogens could exert beneficial actions at lower doses of estrogens (physiological range). This evidence is important due to the combination of non-effective doses of antidepressants plus estrogens could decrease the side-effects of both compounds, and facilitate the behavioral action of antidepressant drugs shortening the latency to onset their action. The present review discusses recent information about the implication of estrogens in depression, and on their effects as positive regulators of new neuron formation in the adult hippocampus. In addition, we will review the possible implication of last effect of estrogens on their antidepressant effects.


Los estrógenos producen una amplia gama de efectos biológicos en todo el cuerpo, incluyendo el Sistema Nervioso Central (SNC). En el cerebro, además de actuar como agentes neuroprotectores, los estrógenos desempeñan un papel importante en la regulación de procesos neuronales constituyéndose así como posibles factores relacionados con la etiología de algunos trastornos neuropsiquiátricos, tales como la depresión. Durante los últimos años se ha generado evidencia de la relación existente entre los niveles fisiológicos de los estrógenos y el desarrollo de episodios depresivos. Por otra parte, los estrógenos tienen un papel importante en la inducción de cambios a nivel de la plasticidad neuronal y de la neurogénesis en el hipocampo adulto. A este respecto se ha observado que los estrógenos regulan el desarrollo, la maduración y la sobrevivencia de las nuevas neuronas en el cerebro adulto, de la misma manera que lo hacen los tratamientos antidepresivos. Los efectos de los estrógenos sobre la neurogénesis y la plasticidad neuronal podrían estar regulados por los receptores a estrógenos, tanto el receptor alfa (REα), como el receptor beta (REβ). Ambos subtipos de receptores se expresan en el hipocampo del cerebro adulto. Así mismo, el hipocampo es una estructura que participa en procesos cognitivos y de memoria y existe evidencia que muestra su participación en la etiología de la depresión y sobre el efecto de los fármacos antidepresivos. La neurogénesis ha sido considerada como un proceso dinámico por medio del cual se forman neuronas funcionales. De tal modo que este proceso también involucra los eventos de sobrevivencia, maduración dendrítica y axonal, así como el establecimiento de conexiones sinápticas para la integración final de las nuevas neuronas en los circuitos neuronales existentes, eventos que son modulados por los fármacos antidepresivos. En el presente artículo se revisa información reciente acerca de los efectos de los estrógenos sobre la depresión y sobre su relación con la neurogénesis hipocámpica.

3.
Salud ment ; 34(6): 497-506, nov.-dic. 2011. ilus, tab
Article in Spanish | LILACS-Express | LILACS | ID: lil-632856

ABSTRACT

New neuron formation in the adult brain extends our knowledge and incorporates a novel dimension about brain plasticity. Adult neurogenesis is a complex process regulated by different factors within the niche, where adult neural stem cells reside, proliferate and differentiate. Neural stem cell together with astrocytes and endothelial cells form the principle components of this complex niche. Other molecular factors that regulate adult neurogenesis are the neuro-transmitters (GABA, glutamate, serotonin, dopamine); hormones (prolactin, growth hormone, estrogens and melatonin); growth factors (FGF, EGF, VEGF) and neurotrophins (BDNF, NT3). All of them regulate different aspects of the neurogenic process. Behavioral regulators that influence new neuron formation in the adult brain include physical activity, complex stimulatory environment best known as enrichment environment, and social interaction. Voluntary physical activity with free access to the running wheel increases the number of proliferating cells, while the complex stimulatory environment provided by enriched environment preferentially influences survival of newborn cells. In addition, social interaction has a positive influence on the new neuron formation in the dentate gyrus (DG). Although adult hippocampal neurogenesis is positively regulated by the aforementioned factors, there are different conditions with negative influence on this process. Some of these conditions are stress exposure and sleep deprivation. Both conditions are present in neuropsychiatric diseases such as depression, anxiety and schizophrenia. Thus, stress and sleep deprivation impair adult hippocampal neurogenesis. Alteration of the neurogenic process following stress occurs due to the high levels of glucocorticoid receptors within the hippocampus and because exposure to stress causes the increase in glucocorticoid levels. Preclinical studies have shown that exposure to different classes of stressors affect hippocampal neurogenesis. Prolonged exposure to stressors (chronic mild stress), predatory odor, foot shock, acute force swimming and psychosocial stress not only affect mature neuronal plasticity but also hippocampal neurogenesis. Although there is information about the effects of stress on adult neurogenesis, the mechanism by which stress causes inhibition of hippocampal neurogenesis remains unclear. Recent work showed that exposure to stress increases the pro-inflammatory cytokine interleukin-1 β (IL-1 β) in several brain areas. Also, administration of IL-1β exerts stress-like effects including down-regulation of hippocampal brain derived neurotrophic factor (BDNF). Additionally, inhibition of the receptor for IL-1β prevents stress-like effects. Moreover, the suppression of cell proliferation is mediated by direct actions of IL-1 β on IL-1RI receptors localized on precursor cells. These findings support that IL-1 β is a critical mediator of the antineurogenic effect caused by acute and chronic stress. However, IL-1 β is not the unique mediator of stress that could be involved in the alteration of adult hippocampal neurogenesis. Recently it was reported that the decrease in cell proliferation concomitantly occurs with an increase of IL6 and TNFα levels. Preclinical studies have suggested that adult hippocampal neurogenesis is not a sole cause of depression or the sole mechanism of treatment efficacy, but it is likely an important contributor to this complex disorder. In order to revert the effects of stress on adult hippocampal neurogenesis, different therapies have been used, for example: electroconvulsive therapy (ECT), exercise, complex stimulatory environment and antidepressant drugs. Although the most rapid induction of neurogenesis is seen with ECT application, most studies have been done with antidepressant drugs. The effects of antidepressants are time-dependent as highest therapeutic effects are observed within the time course of weeks. Different types of antidepressants (serotonin and norepinephrine reuptake inhibitors, monoamine oxidase inhibitors and atypical antidepressants) have been used to study their influence on the neurogenic process. Despite that serotonin reuptake inhibitors are the most prescribed treatments for major depression and that the therapeutic effects of antidepressants require chronic treatment, the mechanisms by which these drugs exert their effects on hippocampal neurogenesis are still unknown. Although serotonin reuptake inhibitors are very fast in increasing serotonin levels, the antidepressant action is delayed possibly because of the induction of structural or functional changes that possibly need longer time (2-4 weeks). In this regard, one of the actions of antidepressants is the regulation of adult hippocampal neurogenesis, a process that is consistent with the delayed onset of therapeutic effects of antidepressants. Fluoxetine is one of the antidepressants more used to study its influence on adult neurogenesis. Fluoxetine targets amplifying neural progenitors by increasing the rate of symmetric divisions without altering the division of stem-like cells in the DG. Considering previous classification based on the temporal protein markers expression, the neural progenitors targeted by fluoxetine correspond to type 2a, 2b and type 3. In addition, the increase in new neurons caused by fluoxetine is due to the expansion of neural progenitors. In addition to cell proliferation, the neurogenic process also involves a maturation step, which is associated with the expression of doublecortin, a protein that binds to microtubules and that is expressed along the cytoplasm of the cell. Further maturation of immature neurons such as dendrite maturation, is controlled independently of the regulation of precursor cell proliferation. Thus, micro-regulatory events influence the course of adult hippocampal neurogenesis. Here, fluoxetine also affects dendrite maturation and functional integration of new neurons. Chronic fluoxetine treatment modifies dendrite morphology increasing dendrite arborisation and favors synaptic plasticity of newborn granule cells. Also, chronic administration of fluoxetine causes behavioral improvement, an effect that was blocked when neurogenesis was ablated by X-ray irradiation. Other important factor that influences the effect of antidepressants on adult neurogenesis is the genetic background. Then antidepressants induced behavioral improvement depending on the genetic background of the mouse strain used. Preclinical studies in mice have revealed different actions of antidepressants on adult hippocampal neurogenesis. However, studies in humans are scarce and deserve greater attention to discover the correlation between preclinical and clinical studies. Recent work in human brains shows contradictory evidences about the regulation of neuronal development by antidepressants. These evidences are in the same line as recent published work in which it was demonstrated that the effects of ADs are age-dependent. Altogether, multiple evidences indicate that antidepressants affect several aspects of the neurogenic process. Therefore, chronic treatment is necessary for the antidepressant-dependent regulation of adult hippocampal neurogenesis. In addition, it has been shown that antidepressants act through different pathways involving both neurogenesis-dependent and neurogenesis-independent actions. Although there is an important increase in the adult hippocampal neurogenesis field, it is necessary to increase the number of studies performed in human beings to correlate the preclinical findings with clinical studies to address the role of adult neurogenesis in neuropsychiatric disorders.


El hallazgo de la formación de nuevas neuronas en el giro dentado (GD) del hipocampo amplió el conocimiento acerca de la plasticidad del encéfalo. En este sentido, la neurogénesis es un proceso que involucra diferentes eventos celulares tales como: la división de las células madre, la proliferación de los neuroblastos, la migración y la sobrevivencia celular, así como la maduración dendrítica, la elongación axonal y la integración de las neuronas nuevas a los circuitos neuronales existentes. En conjunto, todas estas etapas causan cambios estructurales y funcionales en el cerebro. Por lo tanto, la formación de neuronas es un proceso regulado de manera fina por diferentes factores entre los que se incluyen: el nicho; algunos neurotransmisores como la serotonina, la dopamina, el glutamato y el GABA; factores de crecimiento como el factor de crecimiento de fibroblastos, el factor de crecimiento epidermal y el factor de crecimiento vascular endotelial (FGF, EGF y VEGF, por sus siglas en inglés); neurotrofinas como el factor neurotrópico derivado del cerebro y por la neurotrofina 3 (BDNF y NT3, por sus siglas en inglés). Aunado a la existencia de factores que favorecen la neurogénesis hipocámpica, también hay factores que influyen de manera negativa en la formación de neuronas. Entre éstos se encuentra el estrés, el cual se relaciona con algunas enfermedades neuropsiquiátricas como la depresión y la ansiedad. A este respecto, estudios preclínicos han revelado que la aplicación de diferentes tipos de estresores puede afectar la plasticidad neuronal al inducir alteraciones morfológicas y funcionales en el hipocampo, así como afectar el proceso neurogénico. Las alteraciones causadas por el estrés se han relacionado con un aumento considerable y sostenido de los niveles de glucocorticoides. Esto último afecta el proceso neurogénico debido a que el hipocampo es una estructura cerebral que expresa niveles altos de receptores para estas hormonas. Al ser activados de forma persistente, los receptores a glucocorticoides causan una alteración en la neuroplasticidad hipocámpica. De tal modo y considerando lo anterior, teorías recientes han asociado un fallo en la formación de neuronas en el hipocampo con algunos trastornos psiquiátricos como la demencia, la esquizofrenia y la depresión. No esta del todo elucidado el mecanismo a través del cual el estrés altera el proceso neurogénico. Sin embargo, trabajos recientes han revelado que la exposición a estrés causa un aumento en los niveles de ciertas citocinas proinflamatorias, tales como la interleucina-1 β (IL-1 β). El aumento en los niveles de esta citocina provoca un efecto tipo depresivo y una disminución en los niveles del BDNF, así como una alteración en la formación de nuevas neuronas. Estos hallazgos apoyan la idea de que la IL-1 β es un mediador crítico del efecto antineurogénico causado por el estrés crónico y agudo. Sin embargo, la IL-1 β no es la única citocina asociada con las alteraciones en el proceso neurogénico, ya que recientemente se reportó que la disminución en la proliferación celular causada por el estrés ocurre de manera paralela con el aumento en la expresión de los mensajeros de la IL-6 y del TNF-α. Una manera de contrarrestar los efectos del estrés sobre la plasticidad neuronal es a través de la administración de fármacos antidepresivos. Diversos trabajos han mostrado que el tratamiento crónico con este tipo de fármacos revierte las alteraciones en la neurogénesis hipocámpica y en la plasticidad neuronal causadas por el estrés. Finalmente, aun cuando existen evidencias del papel que desempeña la neurogénesis en modelos animales de algunas enfermedades neuropsiquiátricas y de la forma en que los fármacos antidepresivos favorecen la formación de neuronas, es importante contar con más estudios en humanos que permitan corroborar los hallazgos que se han obtenido en los estudios preclínicos. De algún modo todos los reportes apuntan a que los fármacos antidepresivos pueden actuar por mecanismos independientes o dependientes de la neurogénesis hipocámpica.

4.
Salud ment ; 31(3): 221-228, May-June 2008.
Article in Spanish | LILACS-Express | LILACS | ID: lil-632720

ABSTRACT

Alzheimer's disease is characterized by a progressive neuronal death and a lost of memory and cognition that unable the patient to perform daily tasks. Cytoskeleton alterations, identified as a major histopathologic hallmark of neurodegenerative diseases, occur in dementia. In this disease, neurons have pathologic inclusions containing fibrillar aggregates of hyperphosphorylated tau protein in absence of amyloid deposits. Abundant senile plaques and neurofibrillary tangles constitute the two major neuropathologic lesions present in hippocampal, neocortical, and forebrain cholinergic brain regions of Alzheimer's patients. Hyperphosphorylated tau and the subsequent formation of paired helical filaments loses the capabilities for maintaining highly asymmetrical neuronal polarity. Thus, in brains with a high content of hyperphosphorylated tau, microtubules are disassembled, the highly asymmetrical neural shape is lost and an impairment of axonal transport is produced together with a lost of dendrite arborizations. In addition, brain damage caused by free radicals occurs in Alzheimer's disease. This illness involves a reduction of the endogenous antioxidant enzyme system, increased senile-plaque formation, cytoskeletal collapse, and neuronal apoptosis induced by oxidative stress. Acetylcholinesterase inhibitors are the most commonly used compounds in the treatment of neurodegenerative diseases. However, despite their wide use in the treatment of Alzheimer's disease, these compounds have limited therapeutic effects and cause undesirable effects. Therefore it is necessary to investigate new alternatives in the Alzheimer's disease treatment. Considering that neurodegenerative diseases are cytoskeleton disorders, this cellular structure could be a drug target for therapeutic approaches by restoring normal cytoskeleton structure and by precluding damage caused by oxygen-reactive species. In this regard, melatonin, the indole secreted by the pineal gland during the dark phase of the photoperiod, has two important properties that may be useful for the treatment of mental disorders. One is that melatonin is a potent free-radical scavenger and the other is that this indole is a cytoskeletal modulator. A neuroprotective role for melatonin was initially suggested due to its free-radical scavenger properties. Melatonin detoxifies the highly toxic hydroxyl radical as well as the peroxyl radical, peroxynitrite anion, nitric oxide, and singlet oxygen, all of which can damage brain macromolecules. Moreover, melatonin stimulates the activity of antioxidative enzymes including superoxide dismutase, glutathione peroxidase, and glutathione reductase. Also, it is a lipophilic molecule able to cross the blood-brain barrier. All these properties make melatonin a highly effective pharmacologic agent against free-radical damage in the brain. Also, it is a useful neuroprotector in dementia because it synchronize the body rhythms with the photoperiod, which are altered in Alzheimer's disease and because normal circadian secretion of melatonin and sleep-wake cycle can be restored by the indolamine administration. Additionally, cytoskeletal modulation by melatonin is another relevant property of the indole for neurodegenerative diseases treatment. Direct assessment of melatonin effects on cytoskeletal organization in neuronal cells indicated that the indole promotes neuritogenesis in N1E-115 neuroblastoma cells at plasma melatonin concentration. Neurite formation is a complex process critical to establish synaptic connectivity that is lost in Alzheimer's disease. Neuritogenesis takes place by a dynamic cytoskeletal organization that involves microtubule enlargement, microfilament arrangement, and intermediate-filament reorganization. In particular, microtubule assembly participates in neurite formation elicited by melatonin through antagonism to calmodulin. Also, selective activation of protein kinase C (PKC) alpha by melatonin participates in vimentin intermediate filament rearrangements and actin dynamics for neurite outgrowth in neuroblastoma cells. In N1E-115 cells, melatonin at plasma and cerebrospinal fluid concentration caused an increase in microfilament arrays in stress fibers and their thickening, as well as increased growth cone formation, and augmented number of cells with microspikes. Recently, it was demonstrated that melatonin increased both the number of N1E-115 cells with filopodia and with long neurites through both PKC activation and Rho-associated kinase (ROCK) stimulation. The utility of melatonin to prevent damage in the cytoskeletal structure produced by neurodegenerative processes was demonstrated in N1E-115 neuroblastoma cells cultured with okadaic acid (OA), a specific inhibitor of the serine/threonine proteins phosphatases 1 and 2A that induces molecular and structural changes similar to those found in Alzheimer's disease. Melatonin prevented microtubule disruption followed by cell-shape changes and increased lipid peroxidation and apoptosis induced by OA. Melatonin effects on altered cytoskeletal organization induced by OA are dose-dependent and effects were observed at plasma -and cerebrospinal-fluid concentrations of the indole. These data support that melatonin can be useful in the treatment of neurodegenerative diseases by both its action on the cytoskeleton and by its free-radical scavenger properties.


La enfermedad de Alzheimer es una enfermedad neurodegenerativa progresiva que cursa con una deficiencia en las capacidades cognitivas, así como con la presencia de síntomas psiquiátricos y alteraciones conductuales. Las características histopatológicas más importantes en la enfermedad de Alzheimer son la formación de placas seniles, los ovillos neurofibrilares y un incremento en el estrés oxidativo. La polaridad estructural y la morfología neuronal se pierden en la enfermedad de Alzheimer. La proteína tau se encuentra anormalmente fosforilada, los microtúbulos se despolimerizan, se pierden la forma asimétrica de las neuronas y la conectividad sináptica, y se interrumpe el transporte axoplasmático. Asimismo, se ha sugerido que la inhibición o la pérdida en el balance de la formación de neuronas en el hipocampo puede participar en la fisiopatología de la enfermedad de Alzheimer debido a que el cerebro no puede reparar el daño neuronal y consecuentemente induce la pérdida de la cognición. Los agentes colinérgicos son los medicamentos más aceptados en el tratamiento de la enfermedad de Alzheimer en una etapa en que los síntomas se clasifican de medios a moderados. Sin embargo, el tratamiento de pacientes con enfermedad de Alzheimer grave es limitado. Por lo anterior se requiere la búsqueda de nuevas alternativas para el tratamiento de esta enfermedad. La melatonina es una indolamina que actúa como un potente antioxidante, como un modulador de la organización del citoesqueleto así como un factor de diferenciación celular. Diversos estudios han sugerido que la melatonina tiene un efecto neuroprotector por su capacidad de captar radicales libres. La melatonina disminuye la lipoperoxidación y la apoptosis producida por la administración de ácido ocadáico (AO) o peróxido de hidrógeno (H2O2). Se sabe que las especies reactivas de oxígeno producen alteraciones en la organización del citoesqueleto e influyen el estado de fosforilación de la proteína tau y que la melatonina previene la fosforilación de la proteína tau debido a su actividad antioxidante. Se ha descrito que la melatonina modula el arreglo de los microfilamentos de actina y la formación de fibras de tensión en las células Madin-Darby canine kidney (MDCK) por medio de una interacción concertada de la indolamina con la calmodulina y con la proteína cinasa C (PKC) y la participación de la proteína cinasa dependiente de Rho (ROCK). Asimismo, la melatonina participa en las etapas tempranas de la formación de neuritas en las células N1E-115 por medio de ROCK. Otros estudios han indicado que la melatonina previene el daño en el citoesqueleto producido por el AO en las células N1E-115. El AO se ha utilizado para reproducir en células en cultivo las alteraciones en el citoesqueleto y el incremento en el estrés oxidativo que ocurren en las neuronas de pacientes con enfermedad de Alzheimer. La melatonina en estas células previene la retracción del citoesqueleto, efecto del AO. La red del citoesqueleto se mantiene en el citoplasma y en las neuritas de las células N1E-115 cultivadas con melatonina, no obstante que sean tratadas con el AO posteriormente. Recientemente, se demostró que en las células de neuroblastoma N1E-115 incubadas con melatonina se previene la hiperfosforilación de la proteína tau causada por el AO. Aunado a lo anterior, se ha demostrado que la melatonina modula la formación de neuronas nuevas en un modelo in vitro utilizando células embrionarias y de corteza cerebral de ratón. La formación de neuronas inducida por la melatonina se corroboró utilizando células precursoras aisladas de animales adultos así como en animales adultos, y se encontró que la indolamina moduló la sobrevida de las células nuevas formadas, así como la diferenciación de éstas en neuronas nuevas. Las evidencias presentadas en esta revisión indican que la melatonina puede ser útil como un coadyuvante en el tratamiento de las demencias.

5.
Salud ment ; 30(3): 12-19, may.-jun. 2007.
Article in Spanish | LILACS | ID: biblio-986014

ABSTRACT

resumen está disponible en el texto completo


SUMMARY New neuron formation in the adult brain was an interesting finding that extended the knowledge about brain plasticity. In 1966 Joseph Altman reported the incorporation of tritiated thymidine to neural cell DNA. This finding indicated the proliferation event in the adult brain. After twenty years of this finding, new information was generated that confirmed the new neuron formation in the adulthood. In this review, we will mention different aspects of the new neuron formation process called neurogenesis, as well as some of the factors that modulate such process, citing the information already known about the neuronal development stages that take place for the new neuron formation in the hippocampus. Finally, we will review some evidence about the neurogenic process in depression and in neurodegenerative diseases, as well as the possible role of the new neurons when they are integrated into the neuronal network. In the adult brain there are two regions where new neuron formation process takes place: the olfactory bulb and the hippocampus. New neurons are derived from neural stem cells, which reside in the subventricular zone of the lateral ventricles and in the subgranular zone of the dentate gyrus. Neural stem cells may proliferate and generate the rapid amplifying progenitor and neuroblast populations. These populations will migrate and differentiate in neurons to finally be integrated into the neuronal network. In the adult brain, neural stem cells have radial glial features expressing specific markers as the glial fibrilar acidic protein (GFAP), as well as the un-differentiated cell marker nestin. This characteristic makes suitable neural stem cells identification. Thus, the new neurons can be identified by both the specific marker expression and by electrophysiological properties. The different cell development stages during the neurogenic process have been characterized in the subventricular zone as well as in the subgranular zone of the dentate gyrus. In addition to the radial-glia features, neural stem cells show a slowly dividing ratio and once the neural stem cells divide by asymmetric division a rapid amplifying progenitor population is generated. In the hippocampus, phenotype analysis had allowed cell classification in three different types according to the kind of protein marker expression. These progenitors are generated during the expansion phase by symmetric cell division. Type 2a and 2b present short neuritic processes parallel to the granular cell layer and the Type 3 present longer processes integrated into the granular cell layer. During this step, where the migration and cell fate decision take place, the cells express different markers as the microtubule associated protein doublecortin, the homeobox gene related to the Drosophila gene prospero Prox-1 and the neuron-specific nuclear protein Neu-N. Once the cells exit the cell cycle, immature neurons are generated showing longer dendritic processes crossing the granular cell layer. These immature neurons will fully differentiate to be integrated into the neuronal network. At this final stage the cells are fully differentiated and the new neurons express specific markers as the calcium binding protein calbindin and their electrophysiological properties are similar to the old neurons. Neurogenesis is a complex process that is modulated and regulated by different factors. One of these is the niche which is formed by the neural stem cells, astrocytes and endothelial cells. Adult neural stem cells proliferate and differentiate depending on the cellular and molecular composition of the niche. The three components work in synchrony in both neurogenic areas with active proliferation. The role of the niche is the maintenance of the stem cells pool. The astrocytes modulate the proliferation of the neural stem cell and of the rapid amplifying cell population, as well as the migration of these cells by the action of the secreting factors. The niche also plays a key role in maintaining the astrocytic and the endothelial cell populations. Besides the niche, other factors are involved in the neurogenic process, such as the neurotransmitters (GABA, glutamate, serotonin, dopamine), hormones (prolactin, growth hormone), growth factors (FGF, EGF) and neurotrophins (BDNF, NT3). All of them modulate different steps of the process. Some other factors that influence the new neuron formation include the physical activity, enrichment environment and social interaction. It has been shown that physical activity increases the number of surviving newborn cells when rodents have free access to the running wheel. Another positive regulator of the neurogenic process is the enrichment environment. The influence of this factor on the new neuron formation was demonstrated when the animals were maintained in a cage with tunnels and toys. In addition, when the rodents were forced to learn a particular task, more new neurons were found in the dentate gyrus. Additionally, the social interaction has a positive influence on the new neuron formation. Even when neurogenesis is positively regulated by the afore mentioned factors, different conditions and factors have a negative influence on this process. It is known that psychological stress affects in a negative manner the neurogenic process. The stress decreases the proliferation of progenitor cells in the dentate gyrus. This negative effect involves glucocorticoids whose increased levels inhibit the new neuron formation. Also, an exogenous administered corticosterone suppresses the new neuron formation. Another negative factor on neurogenesis related to glucocorticoids, is the sleep deprivation, which impairs the neurogenic process by increasing corticosterone levels causing a reduction in cell proliferation. Also, the abuse drugs cause a negative effect in the new neuron formation. It is known that chronic alcoholism negatively impact neurogenesis as well as cocaine, drug that impairs the proliferation dynamics in the dentate gyrus. Psychiatric disorders, such as depression, have been associated with an impaired neurogenesis, which is reverted by antidepressant drugs. In contrast to the effects of stress, an antidepressant pharmacologic treatment increases the new neuron formation. The antidepressant effect is dependent on chronic treatment, consistent with the time course of the therapeutic action of these compounds. Recently, it has been shown that fluoxetine increases symmetric divisions of early progenitor cells and that these cells called or named neuronal progenitors targeted by fluoxetine in the adult brain. This report describes one mechanism for antidepressant; however, the mechanisms by which antidepressant drugs act is not known at all and can be complex. Nevertheless, it has been reported that antidepressants induce an increase in serotonin or norephinephrine levels which activate the corresponding receptors and their downstream signaling pathways. One of these signaling pathways is the cAMP-CREB cascade. This second messenger is upregulated in the hippocampus together with the activity of the cAMP-dependent protein kinase. On the same pathway, the cAMP response element binding protein (CREB) shows an increase in function and expression. In patients with neurodegeneration, a defect in the neurogenesis process has been described. In Alzheimer's disease, cell proliferation and the potential regenerative factors levels are diminished. However, several studies have revealed an increase in the expression of the neurogenic marker doublecortin. Recently, it has been reported the presence of proliferative cells in presenile Alzheimer hippocampus without indications for altered dentate gyrus. In addition to this finding, the influence of the enrichment environment on the new neuron formation has been explored. In these studies, it was shown that rodents housed under enrichment conditions had an increased neurotrophin 3 (NT-3) and brain derived neurotrophic factor, as well as an increased hippocampal neurogenesis accomplished with the improvement in the water maze performance. In another study, described by Lazarov in 2005, the enrichment environment leads a reduction in the levels of cerebral beta-amyloid and an increase in the genes associated with learning-memory, neurogenesis and cell survival pathways. In amyotrophic lateral sclerosis that is characterized by motor neuron degeneration the new neuron formation is impaired. By using mutant mice for the superoxide dismutase-1 enzyme, an enzyme that is altered in amyotrophic lateral sclerosis and with the precursor cells isolated from the subventricular zone of the this mutants there is a reduction in the incorporation of the DNA synthesis marker bromodeoxyuridine(BrdU), and in the response to mitogen stimulation, in presymptomatic and symptomatic mice, respectively. Evidence obtained so far strongly suggest that neural stem cells manipulation can be a good possibility to induce the neuron replacement in the treatment of neurodegenerative and psychiatric illnesses. However it is necessary to go deeply in the mechanisms and signaling pathways involved in the neurogenesis processes.

6.
Salud ment ; 30(2): 1-10, mar.-abr. 2007.
Article in Spanish | LILACS | ID: biblio-986001

ABSTRACT

resumen está disponible en el texto completo


Summary Postmortem and neuroimaging studies of Major Depressive Disorder patients have revealed changes in brain structure. In particular the reduction in prefrontal cortex and in hippocampus volume has been described. In addition, a variety of cytoarchitectural abnormalities have been described in limbic regions of major depressive patients. Decrease in neuronal density has been reported in the hippocampus, a structure involved in declarative, spatial and contextual memory. This structure undergoes atrophy in depressive illness along with impairment in cognitive function. Several studies suggest that reduction of hyppocampus volume is due to the decreased cell density and diminished axons and dendrites. These changes suggested a disturbance of normal neuronal polarity, established and maintained by elements of the neuronal cytoskeleton. In this review we describe evidence supporting that neuronal cytoskeleton is altered in depression. In addition, we present data indicating that the cytoskeleton can be a potential target in depression treatment. Neurons are structural polarized cells with a highly asymmetric shape. The cytoskeleton plays a key role in maintain the structural polarization in neurons which are differentiated in two structural domains: The somato-dendritic domain and the axonal domain. This differentiated asymmetric shape, depends of the cytoskeletal organization which support, transport and sorts various molecules and organelles in different compartments within the cell. Microtubules determine the asymmetrical shape and axonal structure of neurons and form the tracks for intracellular transport, of crucial importance in axonal flux. Actin microfilaments are involved in force generation during organization of neuronal shape in cellular internal and external movements and participate in growth cone formation. This important cytoskeletal organization preceed the formation of neurites that eventually will differentiated into axons or dendrites, a process that also comprises a dynamic assembly of the three cytoskeletal components. Intermediate filaments are known in neurons as neurofilaments spatially intercalated with microtubules in the axons and facilitate the radial axonal growth and the transport. Neurofilaments also act supporting other components of the cytoskeleton. All changes and movements of the cytoskeletal organization are coordinated by cytoskeletal associated proteins such as the protein tau and the microtubule associated proteins (MAPs). Also, specific interactions of microfilaments, microtubules and filaments which are regulated by extracellular signals take place in modulation of the cytoskeletal rearrangements. The polarized structure and the highly asymmetric shape of neurons are essentials for neuronal physiology and it appears to be lost in patients with a Major Depressive Disorder. Histopathological studies have shown that the hippocampus and frontal cortex of patients with major depressive disorder have diminished soma size, as well as, have decreased dendrites and cellular volume. Dendrite formation depends mainly in microfilaments organization as well as in polarization of the microtubule binding protein MAP2. In addition, there is a decreased synaptic connectivity and an increased oxidative stress, which originates abnormalities in the cytoskeletal structure. These neuronal changes originate alterations in the brain functionality such as decreased cognitive abilities and affective dis-regulations, usually encountered in patients with depression. Therefore, pathologic lesions implicating an altered cytoskeletal organization, may have an important role in decreased cognitive functions, observed in depression, as well as in changes in the brain volume, explained by a lost of neuronal processes such as axons, dendrite processes or dendritic spines, rather than by loss of neuronal or glial cell bodies. This explanation is supported by light immunomicroscopy of brain slices postmortem stained with specific antibodies. Psychological stress which causes oxidative stress has also been suggested to cause a decrease of neuronal volume in the prefrontal cortex, altering the synaptic connections established with the hippocampus. This conclusion was drawn from studies in animal models of psychological stress associated with molecular measurements where defects in the expression of MAP1 and sinaptophysin were found, suggesting that defects in cytoskeletal associated proteins could underlie some cytoarchitectural abnormalities described in depression. Together all the evidence accumulated indicates that major depression illness and bipolar depression are mental disorders that involve loss of axons and dendrites in neurons of the Central Nervous System, that in consequence cause disruption of synaptic connectivity. Thus is possible that depression can be considered as a cytoskeletal disorder, therefore this cellular structure could be a drug target for therapeutic approaches by restoring normal cytoskeleton structure and precluding damage caused by oxygen-reactive species. In this regard, melatonin, the hormone secreted by pineal gland during dark phase of the photoperiod, has two important properties that can be useful in treatment of mental disorders. First, the melatonin is a potent free-radical scavenger and second this hormone governs the assembly of the three main cytoskeletal components modulating the cytoskeletal organization. This notion is supported by direct action of melatonin effects on cytoskeletal organization in neuronal cells. In N1E-115 neuroblastoma cells, melatonin induced a two-fold increase in number of cells with neurites 1 day after plating; the effect lasting up to 4 days. Induction of neurite outgrowths is optimal at 1 nM melatonin and in presence of hormone the cells grew as clusters with long neurites forming a fine network to make contact with adjacent cells. Immunofluorescence of N1E-115 cells cultured under these conditions showed tubulin staining in long neurite processes connecting cells to each other. Neurite formation is a complex process that is critical to establish synaptic connectivity. Neuritogenesis takes place by a dynamic cytoskeletal organization that involves microtubule enlargement, microfilament arrangement, and intermediate- filament reorganization. In particular, it is known that vimentin intermediate filaments are reorganized during initial stages of neurite outgrowth in neuroblastoma cells and cultured hippocampal neurons. Evidence has been published indicating that increase in microtubule assembly participates in neurite formation elicited by melatonin antagonism to calmodulin. Moreover, recently it was reported that melatonin precludes cytoskeletal damage produced by high levels of free radicals produced by hydrogen peroxide, as well as, damage caused by higher doses of the antypsychotics haloperidol and clozapine. N1E-115 cells incubated with either 100 uM hydrogen peroxide, 100 uM haloperidol, or 100 uM clozapine undergo a complete cytoskeletal retraction around the nucleus. By contrast, NIE-115 cells incubated with hydrogen peroxide, clozapine, or haloperidol followed by the nocturnal cerebrospinal fluid concentration of melatonin (100 nM) showed a well preserved cytoskeleton and neuritogenesis. Thus melatonin is a neuroprotective compound, since protects the neurocytoskeletal organization against damage caused by high concentrations of antipsychotics and oxidative stress. As mentioned previously, polarity is intrinsic to neuronal function. In neurons, somatodendritic domain receives and decodes incoming information and axonal domain delivers information to target cells. Progressive loss of neuronal polarity is one of the histopathologic events in depression. Cytoskeletal collapse underlie the lost of structural polarity and it is known that precede neuronal death and disappearance of synaptic connectivity. Drugs that prevent the loss of polarity and cytoskeleton retraction intrinsic to these diseases, as well as damage in cytoskeletal structure produced by oxidative stress can be extremely useful in depression treatment. Melatonin is a potent free-radical scavenger that also acts as a cytoskeleton regulator; thus, we speculate that this hormone could be useful in prevention and alleviation of psychiatry diseases with synaptic connectivity disruption. Clinical trials show that melatonin administration is followed by alleviation of circadian disturbances and cognitive function in various neuropsychiatry diseases. Moreover, in depression, melatonin improves sleep. Thus, as suggestive as this information appears, controlled clinical trials will be necessary to investigate the beneficial effects of melatonin and other drugs in the depression treatment.

SELECTION OF CITATIONS
SEARCH DETAIL